1. (40 points) There are \(m \) types of coins available in infinite quantities where the value of each coin is given in the array \(C = [c_0, \cdots, c + m] \). Determine the number of ways of making change for \(n \) units using the given types of coins?

Write an algorithm that takes \(n, m \) and \(C \), and returns number of ways to make change for \(n \) units using any number of coins having the values given in \(C \).

2. (20 points) Given an array \(A = [a_1, \cdots, a_n] \), find the length of the longest subsequence such that all elements of the subsequence are sorted in strictly ascending order. Write the algorithm, and analyze its run-time and space usage.

3. (40 points) Let \(P(n) \) denote number of ways to paranthesize \(n \) matrices. Write its recurrence relation and show it is \(\Omega(4^n / n^{1.5}) \). (To show the \(\Omega \) notation, solve problem 12-4 of CLRS. Show your result for each step of 12-4.)